Asymptotic behaviour for critical slowing-down random walks

نویسنده

  • Yves Elskens
چکیده

The jump processes W (t) on [0,∞[ with transitions w → αw at rate bwβ (0 ≤ α ≤ 1, b > 0, β > 0) are considered. Their moments are shown to decay not faster than algebraically for t → ∞, and an equilibrium probability density is found for a rescaled process U = (t + κ)−βW . A corresponding birth process is discussed. PACS numbers: 02.50.Ey Stochastic processes 05.20.Dd Kinetic theory 83.70.Fn Granular solids 05.40.Fb Random walks and Levy flights AMS 1991 MSC : 60C18 Self-similar stochastic processes 82C23 Exactly solvable dynamic models (time-dependent statistical physics) 70F35 Collisions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical slowing down in random anisotropy magnets

We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides with that of random site Ising systems. Therefore the asymptotic critical dynamics is governed by the...

متن کامل

Limit Theorems for Random Walks on a Strip in Subdiffusive Regime

We study the asymptotic behaviour of occupation times of a transient random walk in quenched random environment on a strip in a sub-diffusive regime. The asymptotic behaviour of hitting times, which is a more traditional object of study, is the exactly same. As a particular case, we solve a long standing problem of describing the asymptotic behaviour of a random walk with bounded jumps on a one...

متن کامل

Limit Theorems for Random Walks on a Strip in Subdiffusive Regimes

We study the asymptotic behaviour of occupation times of a transient random walk in a quenched random environment on a strip in a sub-diffusive regime. The asymptotic behaviour of hitting times, which is a more traditional object of study, is exactly the same. As a particular case, we solve a long standing problem of describing the asymptotic behaviour of a random walk with bounded jumps on a o...

متن کامل

Discretization methods for homogeneous fragmentations

Homogeneous fragmentations describe the evolution of a unit mass that breaks down randomly into pieces as time passes. They can be thought of as continuous time analogs of a certain type of branching random walks, which suggests the use of time-discretization to shift known results from the theory of branching random walks to the fragmentation setting. In particular, this yields interesting inf...

متن کامل

Random walks in random environment on trees and multiplicative chaos 1

We study random walks in a random environment on a regular, rooted, coloured tree. The asymptotic behaviour of the walks is classified for ergodicity/transience in terms of the geometric properties of the matrix describing the random environment. A related problem, with only one type of vertices and quite stringent conditions on the transition probabilities but on general trees has been conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000